
 Dublin City Schools
 STEAM

 Graded Course of Study
 2022

 DCS STEAM Vision

 Dublin City Schools is committed to providing purposeful STEAM learning experiences to students throughout their K-12
 journey. These experiences will be in the form of integrated, interdisciplinary experiences as well as focused pathways in
 the areas of STEAM.

 We commit to transforming STEAM into more than the integration of Science, Technology, Engineering, and Mathematics
 with vision to expand ownership to all disciplines and grade levels. By creating a culture of thinking, curiosity and creativity
 across content, students will engage in interest based learning that will help them develop the attitudes and skills that will
 support them in a variety of career and life pathways. These learning experiences will support students as lifelong,
 adaptable learners who can thrive in a quickly changing world.

 We believe in STEAM learning for all students and commit to creating equitable access so that our STEAM classrooms
 are representative of our school populations and communities.

 Instructional Agreements:
 ● We recognize the importance of early access and exposure to STEAM learning.
 ● We prioritize learning where students will identify and solve open-ended problems and engage in experiential

 learning.
 ● We will engage students through a lens of design thinking and promote opportunities for PBL.
 ● We will provide students with industry connections and experiences.
 ● We prioritize educating the whole child, in addition to our content. This includes a commitment to employability

 skills and emotional intelligence.
 ● We value students seeing themselves in STEAM fields.

 Introduction to Computer Programming

 Introduction to Computer Programming Course Goals: Introduction to Computer Programming provides an introductory study of
 techniques in programming utilizing Java, C++ and other languages. Topics include structure of programming, input and output, data
 types and structures, logical operations and loops. Students will apply computing resources in a variety of curriculum areas. The
 class is designed as a programming/lecture/laboratory class with emphasis on programming/debugging. Upon completion of this
 course the student will have a solid background in program methodology.

 Systems

 Strand Topic Content Statement

 Computing Systems Hardware and Software CS.HS.9-12.F.a Compare and contrast interactions between
 application software, system software and hardware

 Troubleshooting CS.T.9-12.F.a Apply a systemic process to identify problems and take
 steps to correct them within an integrated computing system.

 Data and Storage

 Strand Topic Content Statement

 Networks and the
 Internet

 Data Collection and
 Storage

 DA.DCS.9-12.F.a Analyze patterns in a real-world data store through
 hypothesis, testing and use of data tools to gain insight and
 knowledge.

 DA.DCS.9-12.F.b Investigate data storage systems to compare and
 contrast how data is stored and accessed.

 Algorithm Analysis and Programming

 Strand Topic Content Statement

 Algorithmic
 Thinking and
 Programming

 Algorithms ATP.A.9-12.F.a Define and use appropriate problem solving strategies
 and visual artifacts to create and refine a solution to a real world
 problem.

 ATP.A.9-12.F.b Define and implement an algorithm by decomposing
 problem requirements from a problem statement to solve a problem.

 ATP.A.9-12.A.a Define and explain recursive algorithms to understand
 how and when to apply them.

 ATP.A.9-12.A.b Use recursion to effectively solve problems.

 ATP.A.9-12.A.c Define and explain sorting and searching algorithms
 to understand how and when to apply them.

 ATP.A.9-12.A.d Use sorting and searching to analyze and organize
 data.

 Variables and Data
 Representation

 ATP.VDR.9-12.F.a Identify types of variables and data and utilize them
 to create a computer program that stores data in appropriate ways.

 ATP.VDR.9-12.A.a Utilize different data storage structures to store
 larger and more complex data than variables can contain.

 ATP.VDR.9-12.A.b Identify the appropriate data structures or variables
 to use to design a solution to a complex problem.

 Control Structures ATP.CS.9-12.F.a Define control structures and Boolean logic and use
 them to solve real-world scenarios.

 ATP.CS.9-12.F.b Use appropriate syntax to create and use a method.

 ATP.CS.9-12.F.c Use data scoping to isolate data.

 ATP.CS.9-12.A.a Write programs that use library methods and control
 structures and methods to solve a problem.

 ATP.CS.9-12.A.b Refactor a program to be smaller and more efficient.

 Modularity ATP.M.9-12.F.a Break down a solution into procedures using
 systematic analysis and design.

 ATP.M.9-12.F.b Create computational artifacts by systematically
 organizing, manipulating and/or processing data.

 ATP.M.9-12.A.a Construct solutions to problems using student created
 components (e.g., procedures, modules, objects).

 ATP.M.9-12.A.b Design or redesign a solution to a large-scale
 computational problem by identifying generalizable patterns.

 ATP.M.9-12.A.c Create programming solutions by reusing existing
 code (e.g., libraries, Application Programming Interface (APIs), code
 repositories).

 Program Development ATP.PD.9-12.F.a Investigate software development methodologies to
 select the appropriate one for a project to complete as a team.

 ATP.PD.9-12.F.b Compare test methodologies to evaluate why each is
 used and to determine their benefits and costs.

 ATP.PD.9-12.F.c Correctly use consistent naming conventions,
 version control and comments to demonstrate why these are
 important for future use, maintenance and reuse of code.

 ATP.PD.9-12.A.a Fully implement the most appropriate software
 methodology to complete a team programming project.

 ATP.CS.9-12.A.a Write programs that use library functions, methods
 and control structures to solve a problem.

